Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigation into the effect of post-annealing on inverted polymer solar cells

Identifieur interne : 000085 ( Main/Repository ); précédent : 000084; suivant : 000086

Investigation into the effect of post-annealing on inverted polymer solar cells

Auteurs : RBID : Pascal:14-0027446

Descripteurs français

English descriptors

Abstract

The work-function of indium tin oxide (ITO) electrodes was tuned with an interfacial dipole layer (WPF-oxy-F) to reverse the polarity in polymer solar cells (PSCs) with an inverted structure. The photoactive layer was based on poly(3-hexylthiophene) (P3HT) and [6,6)-phenyl-C61-butyric acid methyl ester (PCBM). Silver (Ag) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) were used as the top anode. The optimized conditions for the fabricated I-PSCs included an open-circuit voltage (Voc) of 0.68 V, a fill factor (FF) of 64%, and a power conversion efficiency (PCE) of 3.86% through post-annealing at 170 C. The high performance of 1-PSC is due partly to the improved interfacial contact at active/PEDOT:PSS and mainly to the increase of the work-function of annealed PEDOT:PSS/Ag at 170 C for 30 min. Here, we investigated the effect of post-annealing on I-PSC devices by carrying out various annealing sequences.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0027446

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Investigation into the effect of post-annealing on inverted polymer solar cells</title>
<author>
<name>RIRA KANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong-Dong</s1>
<s2>Buk-Gu, Cwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Buk-Gu, Cwangju 500-712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oh, Seung Hwan" uniqKey="Oh S">Seung-Hwan Oh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil</s1>
<s2>Jeongup-si, Jeollabuk-do 580-185</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Jeongup-si, Jeollabuk-do 580-185</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Na, Seok In" uniqKey="Na S">Seok-In Na</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Graduate School of Flexible and Printable Electronics, Chonbuk National University, 664-14 Deokjin-dong</s1>
<s2>Jeonju-si, Jeollabuk-do, 561-756</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Jeonju-si, Jeollabuk-do, 561-756</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Tae Soo" uniqKey="Kim T">Tae-Soo Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong-Dong</s1>
<s2>Buk-Gu, Cwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Buk-Gu, Cwangju 500-712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Dong Yu" uniqKey="Kim D">Dong-Yu Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong-Dong</s1>
<s2>Buk-Gu, Cwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Buk-Gu, Cwangju 500-712</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Nanobio-Materials and Electronics, Gwangju Institute of Science and Technology, 1 Oryong-Dong</s1>
<s2>Buk-Gu, Gwangju 500-712</s2>
<s3>KOR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Buk-Gu, Gwangju 500-712</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0027446</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0027446 INIST</idno>
<idno type="RBID">Pascal:14-0027446</idno>
<idno type="wicri:Area/Main/Corpus">000257</idno>
<idno type="wicri:Area/Main/Repository">000085</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anode</term>
<term>Aqueous solution</term>
<term>Butyric acid</term>
<term>Conjugated compound</term>
<term>Conversion rate</term>
<term>Dipole</term>
<term>Diversity combining</term>
<term>Energy conversion</term>
<term>Ester</term>
<term>Fill factor</term>
<term>Fluorene derivative polymer</term>
<term>Fullerene compounds</term>
<term>Heat treatment</term>
<term>High performance</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Interfacial layer</term>
<term>Open circuit voltage</term>
<term>Optimization</term>
<term>Organic solar cells</term>
<term>Polyelectrolyte</term>
<term>Polymer blends</term>
<term>Silver</term>
<term>Styrenesulfonate polymer</term>
<term>Thermal annealing</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>Work function</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Recuit thermique</term>
<term>Traitement thermique</term>
<term>Cellule solaire organique</term>
<term>Travail sortie</term>
<term>Couche ITO</term>
<term>Addition étain</term>
<term>Couche interfaciale</term>
<term>Dipôle</term>
<term>Combinaison diversité</term>
<term>Anode</term>
<term>Optimisation</term>
<term>Tension circuit ouvert</term>
<term>Facteur remplissage</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Haute performance</term>
<term>Polyélectrolyte</term>
<term>Solution aqueuse</term>
<term>Oxyde d'indium</term>
<term>Thiophène dérivé polymère</term>
<term>Ester</term>
<term>Acide butyrique</term>
<term>Composé du fullerène</term>
<term>Argent</term>
<term>Styrènesulfonate polymère</term>
<term>Mélange polymère</term>
<term>Composé conjugué</term>
<term>Fluorène dérivé polymère</term>
<term>ITO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The work-function of indium tin oxide (ITO) electrodes was tuned with an interfacial dipole layer (WPF-oxy-F) to reverse the polarity in polymer solar cells (PSCs) with an inverted structure. The photoactive layer was based on poly(3-hexylthiophene) (P3HT) and [6,6)-phenyl-C61-butyric acid methyl ester (PCBM). Silver (Ag) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) were used as the top anode. The optimized conditions for the fabricated I-PSCs included an open-circuit voltage (V
<sub>oc</sub>
) of 0.68 V, a fill factor (FF) of 64%, and a power conversion efficiency (PCE) of 3.86% through post-annealing at 170 C. The high performance of 1-PSC is due partly to the improved interfacial contact at active/PEDOT:PSS and mainly to the increase of the work-function of annealed PEDOT:PSS/Ag at 170 C for 30 min. Here, we investigated the effect of post-annealing on I-PSC devices by carrying out various annealing sequences.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>120</s2>
</fA05>
<fA06>
<s3>p. a</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Investigation into the effect of post-annealing on inverted polymer solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RIRA KANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>OH (Seung-Hwan)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NA (Seok-In)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KIM (Tae-Soo)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KIM (Dong-Yu)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong-Dong</s1>
<s2>Buk-Gu, Cwangju 500-712</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Nanobio-Materials and Electronics, Gwangju Institute of Science and Technology, 1 Oryong-Dong</s1>
<s2>Buk-Gu, Gwangju 500-712</s2>
<s3>KOR</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil</s1>
<s2>Jeongup-si, Jeollabuk-do 580-185</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Graduate School of Flexible and Printable Electronics, Chonbuk National University, 664-14 Deokjin-dong</s1>
<s2>Jeonju-si, Jeollabuk-do, 561-756</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>131-135</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000508232370150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0027446</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The work-function of indium tin oxide (ITO) electrodes was tuned with an interfacial dipole layer (WPF-oxy-F) to reverse the polarity in polymer solar cells (PSCs) with an inverted structure. The photoactive layer was based on poly(3-hexylthiophene) (P3HT) and [6,6)-phenyl-C61-butyric acid methyl ester (PCBM). Silver (Ag) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) were used as the top anode. The optimized conditions for the fabricated I-PSCs included an open-circuit voltage (V
<sub>oc</sub>
) of 0.68 V, a fill factor (FF) of 64%, and a power conversion efficiency (PCE) of 3.86% through post-annealing at 170 C. The high performance of 1-PSC is due partly to the improved interfacial contact at active/PEDOT:PSS and mainly to the increase of the work-function of annealed PEDOT:PSS/Ag at 170 C for 30 min. Here, we investigated the effect of post-annealing on I-PSC devices by carrying out various annealing sequences.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Traitement thermique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Heat treatment</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Tratamiento térmico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Travail sortie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Work function</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Función de trabajo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Couche interfaciale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Interfacial layer</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Capa interfacial</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dipôle</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Dipole</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Dipolo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Combinaison diversité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Diversity combining</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Combinación diversidad</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Anode</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Anode</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Haute performance</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>High performance</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Alto rendimiento</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Polyélectrolyte</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Polyelectrolyte</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Polielectrolito</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Solution aqueuse</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Aqueous solution</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Solución acuosa</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Plata</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Composé conjugué</s0>
<s5>30</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Conjugated compound</s0>
<s5>30</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Compuesto conjugado</s0>
<s5>30</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Fluorène dérivé polymère</s0>
<s5>31</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Fluorene derivative polymer</s0>
<s5>31</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Fluoreno derivado polímero</s0>
<s5>31</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000085 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000085 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0027446
   |texte=   Investigation into the effect of post-annealing on inverted polymer solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024